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Abstract
The quantum dynamics of nonrelativistic single-particle systems involving
noncommutative coordinates, usually referred to as noncommutative quantum
mechanics, has lately been the object of several investigations. In this letter
we pursue these studies for the case of multi-particle systems. We use as
a prototype the degenerate electron gas whose dynamics is well known in
the commutative limit. Our central aim here is to understand qualitatively,
rather than quantitatively, the main modifications induced by the presence of
noncommutative coordinates. We shall first see that the noncommutativity
modifies the exchange correlation energy while preserving the electric
neutrality of the model. By employing time-independent perturbation theory
together with the Seiberg–Witten map we show, afterwards, that the ionization
potential is modified by the noncommutativity. It also turns out that the
noncommutative parameter acts as a reference temperature. Hence, the
noncommutativity lifts the degeneracy of the zero temperature electron gas.

PACS numbers: 03.65.Ca, 71.10.Ca, 11.10.Nx

The first paper on quantum field theories formulated in a noncommutative spacetime manifold
was published in 1947 [1], although the idea that a noncommutative spacetime manifold might
provide a solution for the problem of ultraviolet divergences seems to have been suggested
long before [2]. The subject was, perhaps, abandoned due to the success of renormalization
theory and its revival is rather recent and related to string theory. Indeed, the noncommutative
Yang–Mills theory arises as a limit of string theory [3] and it was extracted by Seiberg and
Witten [4] by starting from the open string in the presence of a magnetic field. More details
on this and related subjects can be found in the already existing review articles [5–10] and
also in the specialized literature.

0305-4470/05/300539+09$30.00 © 2005 IOP Publishing Ltd Printed in the UK L539

http://dx.doi.org/10.1088/0305-4470/38/30/L01
mailto:fbemfica@if.ufrgs.br
mailto:hgirotti@if.ufrgs.br
http://stacks.iop.org/ja/38/L539


L540 Letter to the Editor

On the other hand, noncommutative quantum mechanics has also been under scrutiny
[11–13]. The main outcome, in the case of single-particle systems, is that a modification
of the equal-time algebra obeyed by the basic position observables acts as a source of new
interactions which may or may not preserve the original symmetries. This paper is dedicated
to study the physical consequences of introducing noncommutative coordinates in the case of
quantum many-particle systems.

We consider, as a prototype, an idealized high density degenerate electron gas occupying
a volume V = L3. As is currently assumed, the electrons (electric charge −e) are in the
presence of a uniform background of positive ions (electric charge +e) that makes the whole
system electrically neutral. For this to be the case the number of electrons must equal the
number of ions (N). The ions are much heavier than the electrons and will, then, be considered
as static. Although this system has been extensively described in textbooks [14] we make a
small digression here to pinpoint its highlights. By election, the degrees of freedom of each
electron (E) are the Cartesian positions

{
X

j

a,E

}
and linear momenta

{
P

j

a,E

}
, together with

the spins
{
S

j

a,E

}
. For the ions (B), the corresponding observables are, respectively,

{
X

j

a,B

}
,{

P
j

a,B

}
and

{
S

j

a,B

}
. Lower case letters from the beginning of the Latin alphabet (a, b, . . .)

designate the particle, while lower case letters from the middle of the Latin alphabet (i, j, . . .)

only run from 1 to 3 and identify the Cartesian component of the corresponding observable.
Observables associated with the electrons commute with those associated with the ions. The
phase space electron degrees of freedom obey the standard equal-time algebra[
Xi

a,E,X
j

b,E

] = 0,
[
Xi

a,E, P
j

b,E

] = ih̄δij δab,
[
P i

a,E, P
j

b,E

] = 0. (1)

We emphasize that all position observables commute among themselves. The equal-time
algebra for the ion phase space variables can be obtained from equation (1) just by replacing
E by B. The algebra of the spin components will not be explicitly displayed.

Structurally, the more general form of the total Hamiltonian reads

H = HE + HB + HEB. (2)

The Hamiltonian HE describes the free dynamics of the electrons plus the Coulomb interaction
among them. Hence, in the position representation (Xi |�x〉 = xi |�x〉 , P i → pi = −ih̄∂/∂xi),

HE =
N∑

a=1

pi
a,Epi

a,E

2m
+

1

2

N∑
a �=b

V(| �xa,E − �xb,E |), (3)

where

V(|�r|) = e2 e−µ|�r|

|�r| (4)

and µ is a damping factor needed to secure, in the thermodynamic limit, the convergence of
each term in the right-hand side of equation (2) [14]. As for HB one writes

HB = 1

2

N∑
a �=b

V(| �xa,B − �xb,B |)

→ 1

2

∫
d3xa,B

∫
d3xb,Bn(�xa,B)n(�xb,B)V(| �xa,B − �xb,B |). (5)

The absence of a kinetic term in equation (5) reflects the fact that the ions are static.
Furthermore, the continuous nature of the ion background is taken into account by replacing
the discrete summations by continuous integrals. This brings into play the new variable,
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n(�xa,B), known as the ion density. Finally, HEB is taken to be

HEB = −
N∑

a=1

N∑
b=1

V(| �xa,E − �xb,B |)

→ −
N∑

a=1

∫
d3xb,Bn(�xb,B)V(| �xa,B − �xb,B |). (6)

We shall always be working in the approximation n(�xa,B) = constant = N/V .
It has long been shown [14] that H, in equation (2), can be cast

H = H0 + HI , (7)

where

H0 =
∑
�kλ

h̄2k2

2m
c
†
�kλ

c�kλ, (8a)

HI = 2π

V

∑
�k �p�q

′ ∑
λ1λ2

e2

q2
c
†
�k+�q,λ1

c
†
�p−�q,λ2

c �p,λ2c�k,λ1
. (8b)

Here, c†�kλ
(c�kλ) are the creation (annihilation) operators of electrons of momentum �k and spin λ,

whereas q ≡ |�q|. Furthermore, the prime in the summation symbol implies that the momentum
�q = 0 is excluded. Within the framework of time-independent perturbation theory, the main
outcomes, including contributions up to the second order, may be summarized as follows. The
unperturbed ground state (Fermi) energy

(
E

(0)
0

)
is given by [14]

E
(0)
0 = e2

2a0
N

2.21

r2
s

, (9)

where a0 is the Bohr radius, rs ≡ r0/a0 and 4
3πr3

0 = V/N . Moreover, its first- and second-
order perturbative corrections were, respectively, found to read [14–17]

E
(1)
0 = − e2

2a0
N

0.916

rs

, (10)

and

E
(2)
0 = e2

2a0
N

[
ε

(2)r
0 + ε

(2)b
0

] = e2

2a0
N [0.0622 ln rs − 0.094] . (11)

Here [18],

ε
(2)b
0 = 3

16π5

∫
d3q
q2

∫
|�k+�q|>1

d3k
∫

|�p−�q|>1
d3p

ξ(1 − k)ξ(1 − p)

[�q · (�q + �k − �p)](�q + �k − �p)2

= 1

3
ln 2 − 3

2π2
ζ(3) ≈ 0.048, (12)

is the exchange correlation energy in Rydberg units. We shall designate by ξ(x) the Heaviside
step function. In order to work with dimensionless vectors (�p) we define kF �p ≡ �p, where

kF ≡ (
9π
4

) 1
3 r−1

0 is the Fermi wavenumber. Also, p ≡ |�p|. Here ends our brief summary about
the degenerate electron gas.

We turn next to studying the implications of replacing Xi
a,E → Qi

a,E, P i
a,E → P i

a,E , now
obeying the equal-time phase space algebra[
Qi

a,E,Q
j

b,E

] = 2iδa,b�
ij

E,
[
Qi

a,E, P
j

b,E

] = ih̄δij δab,
[
P i

a,E, P
j

b,E

] = 0. (13)
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The distinctive feature of the new position observables
(
Qi

a,E

)
is that they do not commute

among themselves. This lack of noncommutativity is characterized by the real antisymmetric
constant matrix

(
�

ij

E

)
. An explicit representation for this algebra has already been obtained

[10–13] after realizing that (see equations (1) and (14))

Qi
a,E = Xi

a,E − 1

h̄
�

ij

EP
j

a,E. (14)

A similar modification should be introduced for the ions. However, for static ions
equation (14) reduces to Qi

a,B = Xi
a,B .

As for the Hamiltonians, the replacement Xi
a,E → Qi

a,E, P i
a,E → P i

a,E amounts to
H → H, such that

H = HE + HB + HEB, (15)

where

HE =
N∑

a=1

pi
a,Epi

a,E

2m
+

1

2

N∑
a �=b

V(| �φa,E − �φb,E |), (16)

HB = 1

2

∫
d3xa,B

∫
d3xb,B n(�xa,B)n(�xb,B)V(| �xa,B − �xb,B |)

= HB (17)

and

HEB = −
N∑

a=1

∫
d3xb,B n(�xb,B)V(| �φa,E − �xb,B |). (18)

For simplifying purposes, we have introduced the notation

φi
a,E ≡ xi

a,E − 1

h̄
�

ij

Epi
a,E. (19)

As already stated,
{
xi

a,E

}
denotes the set of eigenvalues of the operator Xi

a,E , whereas
pi

a,E ≡ −ih̄∂/∂xi
a,E represents P i

a,E in the basis defined by the common eigenvectors of{
Xi

a,E

}
.

We next focus on V(| �φa,E − �xb,B |) when acting on an arbitrary but differentiable function



(
xi

a,E, xi
b,B

)
. By taking into account equation (19) one finds that

V

(∣∣∣∣xi
a,E − 1

h̄
�

ij

Ep
j

a,E − xi
b,B

∣∣∣∣
)



(
xi

a,E, xi
b,B

)

= 1

(2π)3/2

∫
d3k Ṽ(�k)exp

{
iki

(
xi

a,E − 1

h̄
�

ij

Ep
j

a,E − xi
b,B

)}



(
xi

a,E, xi
b,B

)

= 1

(2π)3/2

∫
d3k Ṽ(�k)exp{i�k · (�xa,E − �xb,B)}exp

{−ki�
ij

E∂
j

�xa,E

}



(
xi

a,E, xi
b,B

)

= V
(∣∣xi

a,E − xi
b,B

∣∣)exp
{
i
←−
∂i �xa,E

�
ij

E

−→
∂j �xa,E

}



(
xi

a,E, xi
b,B

)
= V

(∣∣xi
a,E − xi

b,B

∣∣) �a,E 

(
xi

a,E, xi
b,B

)
, (20)

where Ṽ(�k) is the Fourier transform of V(|�x|) and

V(|�xa,E − �xb,B |) �a,E 

(
xi

a,E, xi
b,B

) ≡ V(|�xa,E − �xb,B |) ei
←−
∂i

�xa,E
�ij

−→
∂j

�xa,E 

(
xi

a,E, xi
b,B

)
(21)

is the Grönewold–Moyal or �-product [19, 20]. Note that xi
a,E does not commute with pi

a,E

but, however, it does commute with �
ij

Ep
j

a,E due to the antisymmetric character of �
ij

E . This
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observation is of the outmost importance for arriving at equation (20). Furthermore, since only
the electron coordinates are sensitive to the �-product we drop, from now on, the subscript E
in this particular symbol. We single out

∫
d3x φ1(x) � φ2(x) =

∫
d3x φ1(x)φ2(x), (22a)

∫
d3x φ1(x) � φ2(x) � φ3(x) =

∫
d3x φ3(x) � φ1(x) � φ2(x)

=
∫

d3x φ2(x) � φ3(x) � φ1(x), (22b)

as the properties of the �-product [6–9] which will play a relevant role in our future
developments.

We now address the problem of computing HEB . By substituting equation (20) into
equation (18) one obtains

HEB

(
xi

c,E, xi
d,B

) = −
N∑

a=1

∫
d3xb,B n(�xb,B)V

(∣∣∣∣xi
a,E − 1

h̄
�

ij

Ep
j

a,E − xi
b,B

∣∣∣∣
)



(
xi

c,E, xi
d,B

)

= −N

V

N∑
a=1

∫
d3xb,B V

(∣∣xi
a,E − xi

b,B

∣∣) �a 

(
xi

c,E, xi
d,B

)

= −N

V

N∑
a=1

[∫
d3z V(|�z|)

]
�a 


(
xi

c,E, xi
d,B

)

= HEB

(
xi

c,E, xi
d,B

)
, (23)

which in view of the arbitrariness of 

(
xi

c,E, xi
d,B

)
amounts to

HEB = HEB, (24)

as an operator identity. Thus, the noncommutativity of the electron position observables does
not affect the Hamiltonian HEB . This is a consequence of the continuous structure assumed
for the ion background.

It remains to study the modifications induced by the noncommutativity on HE . One may
convince oneself that

HE = H0 + VE, (25)

where H0 is given in equation (8a), while

VE = 1

2

∑
�k1λ1

∑
�k2λ2

∑
�k3λ3

∑
�k4λ4

c
†
�k1λ1

c
†
�k2λ2

〈�k1λ1�k2λ2|V(| �Qa,E − �Qb,E |)|�k3λ3�k4λ4〉c�k4λ4
c�k3λ3

. (26)

Through standard manipulations [14], the right-hand side of equation (26) can be
written as

〈�k1λ1�k2λ2|V(| �Qa,E − �Qb,E |)|�k3λ3�k4λ4〉
= V −2

[
η
†
λ1

(a) ⊗ η
†
λ2

(b)
][

ηλ3(a) ⊗ ηλ4(b)
] ∫

d3xa,E

∫
d3xb,E e−i�k1·�xa,E

× e−i�k2·�xb,E [V(|�xa,E − �xb,E |) �a �b ei�k3·�xa,E ei�k4·�xb,E ], (27)

where

�kλ(�x) ≡ 〈�x|�kλ〉 = V − 1
2 ei�x·�kηλ (28)
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is the free electron wavefunction, with

η↑ =
[

1
0

]
, η↓ =

[
0
1

]
. (29)

Furthermore,

ki = 2πni

L
, i = 1, 2, 3 and ni = ±1,±2, . . . , (30)

is the periodically quantized momentum. The use of equations (22a) and (22b) enables us to
find

〈�k1λ1�k2λ2|V(| �Qa,E − �Qb,E |)|�k3λ3�k4λ4〉
= V −2δλ1λ3δλ2λ4

∫
d3xa,E

∫
d3xb,E V(|�xa,E − �xb,E |)

× [ei�k3·�xa,E �a e−i�k1·�xa,E ][ei�k4·�xb,E �b e−i�k2·�xb,E ]

= V −1δ�k1+�k2,�k3+�k4
δλ1λ3δλ2λ4 ei(�k3∧�k1+�k4∧�k2)

∫
d3z V(|�z|) ei�z·(�k4−�k2), (31)

where the wedge product stands for

�k ∧ �p ≡ ki�
ij

Epj . (32)

To arrive at the last term in the right-hand side of equation (31), we took advantage of

ei�x·�k � e−i�x· �p = ei�k∧�p ei�x·�k e−i�x· �p. (33)

The substitution of equation (31) into equation (26) yields

VE = 1

2

∑
�k1λ1

∑
�k2λ2

∑
�k3λ3

∑
�k4λ4

c
†
�k1λ1

c
†
�k2λ2

V −1δ�k1+�k2,�k3+�k4
δλ1λ3δλ2λ4 ei(�k3∧�k1+�k4∧�k2)

×
∫

d3z V(|�z|) ei�z·(�k4−�k2)c�k4λ4
c�k3λ3

= 1

2
V −1

∑
�k �p�q

∑
λ1λ2

[∫
d3z V(|�z|) ei�q·�z

]
e−i�q∧(�k−�p)c

†
�k+�q,λ1

c
†
�p−�q,λ2

c �pλ2c�kλ1
. (34)

This is the desired form of VE in terms of creation and annihilation operators. It exhibits
explicitly the noncommutativity. As is common practice, we have chosen �q to designate the
momentum transfer of the reaction �p + �k → ( �p − �q) + (�k + �q).

As in the commutative case [14], the contribution of the �q = 0 mode in the right-hand
side of equation (34) cancels out those arising from HB and HEB . This means that the
noncommutativity does not destroy the electric neutrality. Hence, the whole modified system
collapses into

H = H0 + HI , (35)

where H0 is given by equation (8a), while HI reads

HI = 2πe2

V

∑
�k �p�q

′ ∑
λ1λ2

e−i�q∧(�k−�p)

q2
c
†
�k+�q,λ1

c
†
�p−�q,λ2

c �p,λ2c�k,λ1
. (36)

At this point a digression is in order. Note that, in contradistinction to the relativistic case, the
commutative limit

(
�

ij

E → 0
)

in equation (36) exists and is well defined. To put it differently,
the UV/IR mechanism [21], that contaminates noncommutative relativistic field theories,
does not presently arise. This is of course due to the absence of ultraviolet divergences in
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the nonrelativistic case. It is a rather simple exercise to verify that HI is Hermitian, as it
must be.

We have so far developed the tools to compute some of the physical effects induced by
the noncommutativity in the electron gas. We focus on the ground state energy eigenvalue
and employ, as in the commutative situation, time-independent perturbation theory. We start
by writing

E0 = E
(0)
0 +

〈
E

(0)
0

∣∣HI

∣∣E(0)
0

〉
+

∑
i �=0

∣∣〈E(0)
0

∣∣HI

∣∣E(0)
i

〉∣∣2

E
(0)
0 − E

(0)
i

+ · · · , (37)

where
{
E

(0)
i

}
are the excited states of H0. Since H0 does not feel the presence

of noncommutativity, its eigenstates and corresponding eigenvalues remain unchanged.
Therefore, equation (9) still holds true.

What come next is the computation of E (1)
0 which, according to equation (37), reads

E (1)
0 = 〈

E
(0)
0

∣∣HI

∣∣E(0)
0

〉

= 2πe2

V

∑
�k �p�q

′ ∑
λ1λ2

e−i�q∧(�k−�p)

q2

〈
E

(0)
0

∣∣c†�k+�q,λ1
c
†
�p−�q,λ2

c �p,λ2c�k,λ1

∣∣E(0)
0

〉
. (38)

As already indicated, the mode �q = 0 does not contribute to the right-hand side of
equation (38). Then, straightforward manipulations lead us to〈

E
(0)
0

∣∣c†�k+�q,λ1
c
†
�p−�q,λ2

c �p,λ2c�k,λ1

∣∣E(0)
0

〉 = −ξ(kF − p)ξ(kF − k)δ �p−�q,�kδλ1λ2 . (39)

Observe now that, when substituting equation (39) into equation (38), the factor δ �p−�q,�k kills
all noncommutative effects and, therefore

E (1)
0 = E

(1)
0 . (40)

The computation of E (2)
0 ,

E (2)
0 =

∑
i �=0

∣∣〈E(0)
0

∣∣HI

∣∣E(0)
i

〉∣∣2

E
(0)
0 − E

(0)
i

, (41)

is cumbersome. We shall not pause here to present the details but merely mention that it turns
out to be given by

E (2)
0 = e2

2a0
N

[
ε

(2)r
0 + ε

(2)b
0 (�)

]
. (42)

It is instructive to compare this result with its commutative counterpart, quoted in
equations (11) and (12). On one hand, ε

(2)r
0 remains unaffected by the noncommutativity

while, on the other hand, the exchange correlation energy term, ε
(2)b
0 , is modified as follows

ε
(2)b
0 → ε

(2)b
0 (�) = 3

16π5

∫
d3q
q2

∫
|�k+�q|>1

d3k
∫

|�p−�q|>1
d3p

ξ(1 − k)ξ(1 − p) e−2ik2
F �q∧(�k−�p)

[�q · (�q + �k − �p)](�q + �k − �p)2
.

(43)

One may easily verify that ε
(2)b
0 (�) is real, as demanded by the Hermiticity of HI . This

allows the replacement of the exponential by its real part, i.e.,

ε
(2)b
0 (�) = 3

16π5

∫
d3q
q2

∫
|�k+�q|>1

d3k
∫

|�p−�q|>1
d3p

ξ(1 − k)ξ(1 − p) cos
[
2k2

F �q ∧ (�k − �p)
]

[�q · (�q + �k − �p)](�q + �k − �p)2
.

(44)
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Needless to say, the equivalence between equations (43) and (44) can also be checked by
direct computation. Since the argument of the trigonometric function depends on kF and,
therefore, on V , the exchange correlation energy is no longer a constant. As consequence, the
thermodynamics properties are modified by the noncommutativity.

We have not been able to compute analytically the integral in equation (44). To proceed
further, we assume that the global features of the system are insensitive to the direction of the
vector θ i ≡ 1/2εijk�

jk

E . We may, then, replace the right-hand side of equation (44) by its
average over all possible directions of �θ . This is effectively achieved by integrating over the
angles of �θ which yields

ε
(2)b
0 (θ) ≡ 1

4π

∫
d��θ ε

(2)b
0 (�θ)

= 3

16π5

∫
d3q
q2

∫
|�k+�q|>1

d3k
∫

|�p−�q|>1
d3p

ξ(1 − k)ξ(1 − p)

[�q · (�q + �k − �p)](�q + �k − �p)2

× sin(k2
F θ |�q × (�k − �p)|)

k2
F θ |�q × (�k − �p)| . (45)

Let us concentrate on analysing different limiting cases. For θ = |�θ | = 0 one returns
unambiguously to the commutative model. On the other hand, when θ → ∞ �⇒ ε

(2)b
0 → 0

implying that E (2)
0 < E

(2)
0 . However, thermodynamic quantities, such as pressure and bulk

modulus, will remain unaltered because the difference E (2)
0 − E

(2)
0 is just a constant.

The next step consists in bringing into play the Seiberg–Witten [4] map. By expanding
the trigonometric function in equation (45) around θ = 0, one arrives at

ε
(2)b
0 (θ) = ε

(2)b
0 − 1

32π5
k4
F Rθ2 + O(θ4), (46)

where

R =
∫

d3q
q2

∫
|�k+�q|>1

d3k
∫

|�p−�q|>1
d3p

ξ(1 − k)ξ(1 − p)|�q × (�k − �p)|2
[�q · (�q + �k − �p)](�q + �k − �p)2

. (47)

The convergence of the k and p integrals is secured by the fact that they run over finite intervals.
On the other hand, power counting tells us that the improper q integral also converges. Hence,
R exists and is well defined. The situation changes drastically for those integrals that act as
coefficients of higher orders in θ . There, power counting indicates that they are divergent.
The way out of the trouble consists in carrying out the q integral between 0 and �, � being a
cutoff such that, as θ → 0, 1

/
k2
F θ goes to infinity faster than �.

By collecting all the results, equation (37) yields

E0 = e2

2a0
N

[
2.21

r2
s

− 0.916

rs

+ 0.0622 ln rs − 0.094 − 1

32π5
k4
F θ2R + O(θ4, rs ln rs)

]

= E0 − N
m

h̄

3

32π5
k4
F e2Rθ2 + O(θ4). (48)

The noncommutativity certainly modifies the ground state energy and, as consequence, the
ionization potential of the material being treated as an electron gas. Moreover, from the
comparison of equation (48) with the commutative electron gas at nonzero temperature
[17], one may conclude that θ acts as a reference temperature [10] since ∂E0/∂θ is a linear
function of θ much as the specific heat at constant volume is a linear function of the absolute
temperature. This is the main outcome of this paper, namely, the noncommutativity of the
position observables lifts the degeneracy of the model and can be interpreted as if the electron
gas would be at nonzero temperature.
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